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Diffusion of precessing spins through a constant field gradient is
ell-known to produce two distinctive features: an exp(2bt3) de-

ay of the echo amplitude in response to two pulses and a much
lower decay of the Carr–Purcell echo train. These features will
ppear whenever the spin frequency is described by a continuous
andom-walk. The present work shows that this may also occur in
he presence of motions with long correlation times tc—continu-
us Gaussian frequency noise with an exponential autocorrelation
as the correct properties over time durations smaller than tc.
hus, time-cubed echo decays will occur in situations other than
hysical diffusion. The decay rate of the Carr–Purcell echo train is
hown to vary with the pulse spacing t whenever the correlation
ime tc is long; the slower Carr–Purcell decay compared to the
wo-pulse echo decay is not unique to diffusion. Simulations are
resented that display time-cubed decays. The simulations con-
rm two important criteria: the echo time must be less than tc and
he frequency noise must consist of nearly continuous variations,
s opposed to step-like changes. These criteria define the range of
hysical parameters for which time-cubed decays will be
bservable. © 1999 Academic Press

Key Words: diffusion; transverse relaxation; spin–spin relax-
tion; spin echoes.

I. INTRODUCTION

From the earliest observations of spin echoes (1) in NMR,
he case of spins diffusing with coefficientD through a con
tant field gradientG 5 (­uHu/­ x) has been discussed. T
roblem can be treated with Torrey’s formalism of the di
ion-modified Bloch equations (2–4) or by following the fre-
uency and phase trajectories of the ensemble of spins
esult (3, 4) is that the echo amplitudeA decays as the exp
ential of thecubeof the echo time (t 5 2t, wheret is the
ulse spacing). ThusA follows

A~t! 5 exp~2g 2G2Dt 3/12!, [1]

here all other sources of decay have been neglected. Fu
ore, the damping due to diffusion can be suppresse

efocusing the spins many times during the timet. Thus, the
arr–Purcell–Meiboom–Gill pulse sequence (5, 6) (90y–t–
80 –t–echo–t–180 –t–echo–t, etc.) yields an echo at tim
x x
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(t 5 n2t, wheren is the integer echo number at timet) with
mplitudeA,

A~t! 5 exp~2g 2G2Dt 2t/3!. [2]

or a large number of echoesn, t is much smaller thant. Thus,
he CPMG echoes decay exponentially in timet and deca
ore slowly (3–5) than the two-pulse echoes of Eq. [1].
eed, in the limit that the pulse spacingt approaches 0, th
iffusive damping is zero, allowing the “trueT2” (neglected
ere) to be determined; this was an original purpose o
arr–Purcell pulse sequence (5, 6).
Recently, spin echoes have been used to measure the

ion coefficient of the modulation wave of incommensura
istorted solids (7–10). Here the distortion wave coupl

hrough the quadrupole interaction to the frequency of a g
pin transition. Some of the work has been (7) zero-field NQR
nd some has been (8–10) high-field, quadrupole-perturbe
MR. The spin-echo envelope in these systems has a d

2ate2bt3; the linear term is ordinaryT2 damping while thet 3

amping is regarded as asignaturefor diffusion of the distor
ion wave. Here the role of the field gradient is supplied by
istortion wave’sslope, linking spin frequency to position

ndeed, the variation of the apparent diffusion coeffic
cross the inhomogeneously broadened lines is clear evi

or small variationsof the phase of the modulation wave (9).
In the incommensurately distorted systems, the disto
ave is generally pinned to defects or impurities. Thus,
xpects thermal agitation to yieldrestricted diffusion of the
istortion, at best. Of course, provided the spin echo time
hort enough, unbounded diffusion and restricted diffusio
he distortion wave will be indistinguishable.

Our purpose here is not to further examine the incomm
urate solids. Instead, the use of thee2bt3 decay as a signatu
f diffusion advances the central questions of the present w
Are there circumstances other than physical diffusion
esult in e2bt3 two-pulse echo decays? Under what circu
tances do CPMG echoes decay more slowly than two-
choes?”
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365EXPONENTIAL TIME-CUBED ECHO DECAYS
II. RESULTS AND DISCUSSION

ime-Cubed Decay

In the presence of a constant gradientG, a spin’s frequenc
is linearly related to its positionx, with v 5 v 0 1 gGx.

hus, in the case that the spin diffuses, its frequency
ontinuously changing variable that executes a random
i.e., (Dv)2 is proportional to the time interval). Obviously,any
ystemin which the spin frequency is a continuously chang
andom-walking variable will produce the same spin e
ehavior as in diffusion-through-a-gradient. That is, the t
ulse echo amplitude will decay ase2bt3 and CPMG echo train
ill decay more slowly than two-pulse echoes. The key in
ient is that thespin frequency must be diffusing,regardless o
ow this arises.
For a spin diffusing in a box of sideL with a constan

radient G, the peak excursions of the frequencyv are
gGL/ 2. The frequency has a well-defined correlation timtc

if the diffusion were unbounded, this would not be so) wh
s approximately the time to diffuse across the box:t c .

2/ 2D. Since the results of Eqs. [1] and [2] refer to unboun
iffusion, they apply only for echo experiments over tim
! t c.
Thus, we are led to examine other sources of continuous

requency fluctuations with long correlation timestc. Specifi-
ally, we consider a spin whose frequencyv is determined b
he sum of a very large numberN of independent fluctuator

v 5 v0 1 O
j51

N

xj. [3]

he fluctuators could be other spins that couple magnetica
or they could be molecules that jump between two or m

rientations and couple tov through quadrupole interactio
he numberN is large so thatv fluctuates essentiallycontin-
ously,regardless of whether the individual fluctuationsxj are
ontinuous or discrete. Each fluctuator must couple tv
eakly so that any step-changes inv are of no consequenc
gain this says the numberN must be large. We assume that

ndividual fluctuators are all characterized by the same e
ential autocorrelation (3, 4, 11) function, exp(2utu/t c), with

he same correlation timetc. Thus, asv is the sum ofN
ndependent fluctuators,v will have the same autocorrelati
unction and time constant as the individual fluctuators. By
entral limit theorem (12), the values ofv will have an ap
roximately Gaussian distribution.
Now, the above model doesnot result inv executing a tru

andom-walk. Indeed,v will have upper and lower boun
iven by the sums over all the fluctuators of the largest
mallest valuesxj . But for N very large, these limits a

nconsequential over timest ! t c. To show this, we first us
heuristic argument and later use a Langevin model.
a
lk
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For simplicity, let each fluctuator be a two-state device w
llowed values ofx 5 61. We go to the limit ofN3 `. We
ote that the rms value ofv 2 v0 is =N and that this rm
alue corresponds closer and closer to a 50:50 distributio
wo-state fluctuators asN 3 `. Thus, forN 3 `, nearly the
ntire probability distribution ofv involves configurations ne
0:50, more and more distant from the upper and lower bo
6N). Thus, it is reasonable that the effects of the lim
isappear asN 3 ` and the behavior becomes that of
nbounded random-walker fort ! t c.
The continuous, Gaussian noise of our model may be cr

y the action of an RC-filter on white noise,9. This Langevin
odel (12) is presented in Fig. 1. The output voltageV plays

he same role as the spin frequencyv, above. The outpu
oltageV will obey a differential equation,

dV

dt
5

9 2 V

RC
. [4]

ntegrating fromt 0 to t 0 1 t, one obtainsDV, the change i
utput voltage,

V~t01t! 2 V~t0! ; DV

5
1

RCE
t0

t01t

9 ~t9!dt9 1
21

RC E
t0

t01t

V~t9!dt9. [5]

rovided the time durationt obeyst ! t c, V(t9) in the secon
ntegral may be treated as a constant,V(t0 ). Thus, one has

RC~DV! 5 E
t0

t01t

9 ~t9!dt9 2 V~t0!t, [6]

here the first term is the result that would be obtained if
hite noise were simply integrated, the random-walk c
aking the mean square ofDV, and using RC5 t , we have

FIG. 1. Circuit for generating continuous, Gaussian noise with an a
orrelation function of exp(2utu/t c), with tc 5 RC. The circuit is used t
alculate the statistical properties of the output voltageV for times shor
ompared totc. The voltageV is analogous to the spin frequencyv in this
angevin model.
c
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366 PFITSCH, MCDOWELL, AND CONRADI
t c
2~DV! 2 5 S E

t0

t01t

9 ~t9!dt9D 2

1 V ~t0!
2 t 2

2 2tV~t0! E
t0

t01t

9 ~t9!dt9. [7]

n this equation9# 5 0, removing the cross-term. The first te
s the random walk result and islinear in time, because th
orrelation timeof the white noise9 is infinitesimal and
onsequently short compared tot, yielding

t c
2~DV! 2 5 2V2tct 1 V ~t0!

2 t 2. [8]

he coefficients in front oft are secondary to our argument a
esult from standard Langevin theory (12). [In detail, in terms
f the autocorrelationU of the input noise voltage9, the first

erm F of [7] may be written as a double integral. The e
esult is F 5 t * U (t)dt, where the infinitesimally sho
orrelation time allows the integral limits ont to be taken to
`. The Green’s function solution to [4] is

V~t! 5 E
t952`

t

9 ~t9!e
2~t2t9!/RCdt9.

rom this, the mean squared output voltageV2 is found by
ouble integration again, leading toV2 5 * U (t)dt / 2t c, with

ntegral limits again taken out to6`. Together the result
5 2t cV

2t.] Returning to [8], the first term dominates t
econd one for short times,t ! t c. Thus, for such short time
he change inV (or v in the spin problem) is just that of a pu
andom-walk (simple integration of white noise yields only
rst term, linear int). Thus, the spin in the above model w
ield an echo amplitude that decays ase2bt3.
We stress that the above scenario ofN independent fluctua

ors is quite distinct from the diffusion problem. For exam
n the above scenario,v has an approximately Gaussian d
ribution while in the diffusion problem, the distribution
requencies reflects the size and shape of the sample.

A more formal approach is to use the result of Klauder
nderson (13) for the spin echo amplitudeA in the presence o
aussian noise with an exponential autocorrelation with
onstanttc. As quoted elsewhere (14, 15), for echo timet,

A~t! 5 expS2M2t c
2H4e2t/ 2tc 2 e2t/tc 1

t

tc
2 3JD . [9]

his expression is valid for all timest, shorter or longer tha
c. It is derived (13) using the relation for Gaussian distrib
ions of spin phasef, ^eif& 5 exp(21f 2). For timest ! t ,
2 c
,

d

e

he inner brackets of Eq. [9] can be expanded and ha
eading term int 3, resulting in

A~t! 5 exp~2M2t c
2~t 3/12t c

3!!. [10]

hus, thee2bt3 echo decay is a direct result of the assumpt
bout the fluctuations in the spin frequency.
The above argument used explicitly only the autocorrela

f the spin frequency. Where does the requirement forcontin-
ousGaussian noise arise? The calculation assumes (13) that,
t all times, the distribution of spin phase is Gaussian. Dis
hanges in spin frequency (hopping) would give rise
wo-component distribution—a zero-width component
pins with no frequency change and a broader component
hose spins whose frequency jumped once or more. Onlyt

t c (not useful here) does this tend to Gaussian, with all s
xperiencing many frequency changes. Thus, Eqs. [9] and
efer specifically to continuous frequency variations.

arr–Purcell Echo Trains

Unlike the T2 damping of the Bloch equations (3, 4), the
amping due to diffusion through a field gradient is subs

ially reduced by using a multiple echo sequence like
arr–Purcell or CPMG sequence (5, 6). But this reduction in

ransverse dampingcannotbe regarded as a signature of d
usion. Indeed, we show here that the reduction in dam
hould occur whenever the correlation timetc of the fluctua
ions of v is long, specificallyt ! tc where t is the pulse
pacing of the CP or CPMG sequence.
Karlicek and Lowe (16) introduced the widely used notio

hat thep pulses of a CP or CPMG sequence effectively in
he resonance offset or field gradient at eachp pulse (17).
hus, the actual resonance offset is to be thought of as m
lied by a square wave of frequency 1/4t. Thus, for any wea
eld to have a cumulative effect it must contain componen
requency 1/4t (or, to a lesser extent, any of its odd harmon
/4t, 5/4t, etc.). So approximately, standard relaxation the
3, 4, 11) which is restricted to weak collision cases predic
ecay rateT2

21

T2
21 5 M2 z J~p/ 2t!, [11]

hereM 2 is the second moment (mean-square) of the flu
tions andJ is their spectral density; the angular freque
/2t corresponds to 1/4t in cycles per second. An excelle
iscussion of this viewpoint appears in Callaghan’s text (18).
Consider a fluctuating frequencyv described by an exp

ential autocorrelation function, exp(2utu/t c), with correlation
ime tc. Here we do not require thatv be a continuousl
uctuating variable, so this is much less restrictive than
odel proposed above to yielde2bt3 two-pulse decays. Th

pectral density will be



w
n nc
v

T
fl e
r re
e th
1

a
n
P
w mo
t
p ticl
p
j q.
[ ’s
p b
C

h a
m sp
(
2 ult
f
p n
n ion
g y
c wo
s d
s ts
b the
t lse
S r s
a hu
t

T e
a
r

h
f d t

o with
t ll
n rom
r een
4 the
n the
r the
r ved
s g the
p
d
c wo-
s ature
o

ains
h eter-
m a
s -
t ate,
p
f
fl
t
e tor
i

p cy
v e
t
p
m is
o

the
fl o
a
l tion
i tial.
H ,
0 by
E sent
t ate
c ntial
d arly
e
w
l ing
l
b with
s

s of
r ction

367EXPONENTIAL TIME-CUBED ECHO DECAYS
J~v9! 5
tc

1 1 v9 2t c
2 , [12]

hich reduces to 1/v92tc for v9tc @ 1. Here the variablev9 is
amed to avoid confusion with the fluctuating spin freque
. The CPMG decay rate will be, witht ! tc,

T2
21 5 M2@~p/ 2t! 2tc#

21 5 4M2t
2/p 2tc. [13]

his last result has the usual result ofT2
21 } t c

21 in the slow
uctuation limit. Thet2 dependence ofT2

21 is present in th
esult of the diffusion case expressed in Eq. [2], but its p
nce here shows it is more general, resulting simply from
/v92 tail of the Lorentzian spectral density.
In the case of diffusion (12), the particle velocity has

early white frequency spectrum (typically out to 1011 s21).
article positionx and velocityv are related byv 5 iv9x (here
e adopt a frequency domain viewpoint of the particle

ion), or x 5 v/iv9. Because power spectra involvetwo
owers of the fluctuating variable, the spectrum of par
osition (and the directly related spin frequencyv) is 1/v92,

ust as in Eq. [12]. Thus, the well-knownt2 dependence of E
2] results from the 1/v92 spectrum of a diffusing particle
osition and spin frequency. Again, this view is developed
allaghan (18).
Ansermetet al. considered a Carr–Purcell echo train wit
odel of a spin coupled to a single (unobserved) other

19). The other spin makes transitions (fromSz 5 11/ 2 to
1/2) with a correlation timetc. These transitions may res

rom dipolar-driven flip-flops among the other spins orT1

rocesses of the other spin. In a timet, there will be a mea
umberm 5 t/t c transitions of the other spin. Each transit
ives rise to a dephasing ofDf 5 dv z time. The frequenc
hangedv is just 2w, recalling that the other spin has just t
tates, leading to frequencies1w and 2w for the observe
pin. The time over which the changed frequency ac
etween 0 andt, depending on the exact time at which

ransition of the other spin occurs relative to the RF pu
ubsequent transitions produce phase changes of eithe
gain depending on the timing relative to the RF pulses. T

he mean squared phase error is approximately

~Df! 2 5 m z ~2w z t / 2! 2 5 ~t/tc!w
2t 2. [14]

he linear increase in (Df)2 with time t indicates that th
mplitude of the echoes decays exponentially with timet, with
ate

T2
21 5 w2t 2/ 2tc; [15]

ere we have assumed the weak collision limit in which (Df)2

or a single transition of the other spin is small compare
y

s-
e

-

e

y

in

is

s.
ign,
s,

o

ne. The above result for the echo train decay rate agrees
hat of Ansermetet al. (19) to within an unimportant sma
umerical factor. This decay rate is very close to that f
elaxation theory, Eq. [13]; the numerical difference betw
/p2 and 1/2 is likely due to our approximations, including
eglect of the higher harmonics of the square wave in
elaxation theory calculation. The practical importance of
esult (15) is that the effect of the other spin on the obser
pin’s transverse decay may be driven to zero by makin
ulse spacing very small. Finally, we reiterate that thet2

ependence ofT2
21 depends only on the 1/v92 tail of J(v9) and

an occur widely, anywhere from diffusing systems to t
tate models. Thet2 dependence cannot be taken as a sign
f diffusion.

III. SIMULATIONS

Simulations of two-pulse echoes and CPMG echo tr
ave been performed using a Monte Carlo approach to d
ine the conditions yieldinge2bt3 decays. The frequency of

pin is determined by its interaction withN two-state fluctua
ors. Each fluctuator is equally likely to be in either st
roducing a frequency shift of the spin of6(Dv); the spin’s

requencyv is the sum over allN of these. Each of theN
uctuators in the system has a correlation timetc. Thus, the
ime t9 to the next jump is chosen from a distributionP(t9) ;
xp(2t9/(2t c/N)). At that time, a randomly selected fluctua

s toggled to the opposite state.
The spin’s precessional phasef is initially zero, following a

/2 RF pulse. The phasef is the time integral of the frequen
, trivially calculated by multiplyingv by the duration of th

ime interval over whichv is constant. The effect of an RFp
ulse is to invert the precessional phasef. The total spin
agnetization is computed as^cosf&, where the averaging
ver an ensemble of 4000 spins, typically.
Two-pulse echo decays are shown in Fig. 2. There,

uctuators’ correlation time istc 5 5. The normalized ech
mplitudeA is presented by plotting2ln( A) vs echo timet on

og–log axes so that the slope of any straight-line sec
ndicates the power on the time variable in the exponen
orizontal lines corresponding toA 5 0.999, 0.99, 0.9, 0.5
.1, and0.01 are provided. All of these results are well fit
q. [9] with no adjustments to parameters. We do not pre

his fit because our goal is not to verify Eq. [9], but to indic
learly the conditions under which one finds cubic-expone
ecays. In the figure, the cubic-exponential decay is cle
vident fort , t c, as shown by the solid lines with slope5 3,
hile the results fort . t c tend toward slope5 1. For such

ong times, the theory of motional averaging applies, yield
inear-exponential decays as is well-known (3, 4, 11). The cu-
ic-exponential regime appears in simulations of systems
low rotational diffusion (20).
The middle curve in Fig. 2 is a superposition of four set

esults, all with the same value of the mean-squared intera
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368 PFITSCH, MCDOWELL, AND CONRADI
trength (second moment),N(Dv) 2 5 0.005. Thefour sets
aveN 5 50, 20, 10, and 5. The observation that the sets
n the same curve shows that only the second moment m
ere, whether in thet 3 or linear region. The upper and low
urves are also forN 5 50, but withN(Dv) 2 5 0.0005 and
.05, respectively. The change in second moment results
ffsets of these curves.
For a given set of parameters, one measure of the impor

f the t , t c criterion for cubic-exponential decays is
mplitude A of the decay fort 5 t c. From Eq. [10] and
ubstitutingt 5 t c,

A(tc) 5 exp~2N~Dv! 2t c
2/12! 5 exp~2Q2!, [16]

here the dimensionless parameterQ is defined by

Q ; DvtcÎN/Î12. [17]

learly, forQ @ 1, the echo amplitude has already decaye
mall values before the regime of motional narrowing is
ered. In this case, the time-cubed decay will be evident. FQ

1, most of the observable part of the decay (betweenA 5
.99 and0.01, for example) will occur fort . t c and will be
f the forme2kt.
The results in Fig. 3 explore the effect of the noncontinu

FIG. 2. Decay of the normalized two-pulse echo amplitudeA, with the
ertical axis displaying2ln( A), as a function of echo timet. Horizontal lines
how the locations ofA 5 0.999, 0.99, 0.9, 0.5, 0.1, and0.01. The value
f tc is 5. In the lower, middle, and upper curves, the second momentN(Dv) 2

as values 0.05, 0.005, and 0.0005. In the middle curve, for fixedN(Dv) 2 5
.005,four values ofN andDv are used. The primary result is that thee2bt3

ecay (slope5 3) becomese2kt (unity slope) for echo timet . t c.
ll
ers

he

ce

o
-

s,

tep-like nature of the frequency noise in the present m
his is an important issue, because step-like variations
ften be encountered in magnetic resonance—magnetic
ling to unlike spins is quantized through spin quantum
hanics. In the case of incommensurately distorted so
ontinuous motion of the (pinned) modulation wave se
nlikely. Rather, discrete small motions should result f
istant phase slippages.
In Fig. 3,tc 5 50 and all the diplayed echo times are sma

hantc, avoiding the motional averaging effect apparent in
. The second moment is held constant atN(Dv) 2 5 50, with

5 5, 20, and 50. The slope5 3 regions of the deca
following e2bt3) all overlap, showing again that it is t
econd moment that is important here. Ast increases, each da
et gradually becomes a linear-exponential.
The linear-exponential region is easily understood f

trong collision theory. The distribution of precessional ph
in the present model is not Gaussian, as assumed by Kl

nd Anderson, for example (13). Instead, a fraction exp[2t/
2t c/N)] of the spins have suffered zero frequency chan
rom their N fluctuators (note—this is zero changes, not a
hange of zero). Thus, the distribution of phasef is roughly a
aussian with an added delta-spike atf 5 0, corresponding t

his fraction of spins. At long enough times, any spin that
uffered a change in frequency will develop a large phase
ffectively removing the spin from the signal. Under th

FIG. 3. Decay of two-pulse echoes, all at echo timest , t c. Heretc 5 50
nd the second momentN(Dv) 2 is 50 throughout. The echo amplitudeA is

imited from below by the lines of unity slope corresponding to exp(2Nt/ 2t c),
rom strong collision theory. Three values ofN are used: 5, 20, and 50. Th
he cubic-exponential decay will become linear-exponential at longt, due to
he discontinuous, step-like nature of the frequency fluctuations.
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369EXPONENTIAL TIME-CUBED ECHO DECAYS
onditions, the observed signal is entirely from the spins
ero frequency changes and the amplitude isA 5 exp(2Nt/
t c). Solid lines of unity slope appear in Fig. 3, correspond
o the above limiting amplitude forN 5 5, 20, and 50
learly, the unity-slope parts of the decays are well-desc
y the above formula,A 5 exp(2Nt/ 2t c). This is a “strong
ollision” model, because it describes the limit in whic
ingle change in any of theN fluctuators is sufficient to total
ephase any spin. Only the spins with no “collisions” (no fl
f any of the fluctuators) contribute to the echo. The str
ollision limit also describes relaxation by slow molecu
eorientations, in the case of large-angle jumps (21).

The unity-slope regions of the Fig. 3 decays show
trong-collision effect. AsN increases in Fig. 3, the unity-slo
ines are moved down on the plot; for large enoughN, the
lope5 3 region covers all of the measurable portion of
ecay (e.g.,A . 0.01).This dependence onN stems from th
xed second moment: for largeN the step-size 2Dv of the

ndividual fluctuations is small and small frequency chan
equire more time to develop into “fatal” phase errors.

The results of Fig. 3 demonstrate that the echo ampl
ecay will always followe2bt3 for small echo timest. It is easy

o show analytically that the exponent will be cubic it
hether the distribution of precessional phasef is Gaussian o
ot, for short time.
The crossover from cubic-exponential to linear-expone

ehavior will occur for echo timet such that the cubic
xponential of Eq. [10] approximately equals the limiting fo
f the amplitude:

A 5 exp~2N~Dv! 2t 3/12tc! 5 exp~2Nt/ 2tc!. [18]

his occurs for (Dv) 2t 2 5 6 and will correspond to an ec
mplitude of exp(2N=1.5/Dvt c) 5 e21/P, where we defin

he dimensionless parameterP [ Dvt c/=1.5N. P is a mea
ure of the effect of the step-like fluctuations in frequency.

@ 1, the case of largeDv and/or smallN, the shift from
ubic-exponential to linear-exponential decay occurs at
alues of the amplitudeA. Thus, most of the observable dec
ill be linear-exponential. On the other hand, for the cas
mall Dv and/or largeN, P ! 1, the shift will occur at ver
mall amplitudesA. Thus, the observable portion of the de
ill be cubic-exponential (unless the motional narrowing
ion of t . t c is entered).
In short, all the decays will start out cubic-exponential

ecome linear-exponential at long times, either becauset will
ventually exceedtc or because the decay amplitude is limi

rom below by exp(2Nt/ 2t c). This last limitation will be
asily detected provided thatP 5 Dvt c/=1.5N @ 1.
The curves in Fig. 4 show all of these effects. The num

f fluctuatorsN is fixed at 50 andtc is 5. In the regiont . t c,
he region of motional averaging, the decay curves tend t
orm e2kt, unity slope in Fig. 4. Fort , t , the decay curve
c
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e
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he

ll begin ase2bt3 until they run into the limiting line given b
xp(2Nt/ 2t c). The data sets with the largest values ofDv
and henceP as defined above) follow the limiting line ov
he entire measurable portion of the decay.

The two criteria for the observability of thee2bt3 decay are
@ 1 andP ! 1. Together these may be written

1/ÎN ! Dvtc ! N. [19]

learly, the larger the number of fluctuatorsN, the larger the
ange ofDvtc values that yield the cubic-exponential deca

The simulations were also used to test the CPMG de
he decays were always exponential, with a decay rate
ortional toN(Dv) 2t 2/t c in the relevant conditions, in acco
ith Eqs. [13] and [15]. Hence, in an experiment on a sys
ith slowly fluctuating spin frequencies, two-pulse cubic
onential-decays that become linear-exponential in CPMG
eriments could be observed.

IV. CONCLUSIONS

Diffusion of spins through a constant field gradient resul
n e2bt3 decay of two-pulse spin-echoes and yields a C
urcell echo train that decays (ase2kt) more slowly than th

wo-pulse echoes. However, both of these features can

FIG. 4. Plot of two-pulse echo amplitudeA over a wide range of inte
ction strengthsDv, all with tc 5 5 andN 5 50. For very smallDv, one mus
nter the motional averaging region (t . t c) for substantial echo attenuatio
or very largeDv, most of the observable portion of the decay(0.99 . A .
.01)occurs along the strong collision limit line (unity slope at left) given
xp(2Nt/ 2t c). The time-cubed decay is observable for intermediate valu
v.
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rom situations not involving physical diffusion. First, it w
oted that the critical ingredient is that thespin frequenc
iffuses(i.e., the spin frequency is a continuous variable
xecutes a random-walk). Second, it was shown that con
us Gaussian noise may be considered to execute a ra
alk over times shorter than the correlation time. Thus,e2bt3

cho decays may occur for situations such as a single
oupled to a great many fluctuators when the correlation
s long.

The variation of the decay rateT2
21 upon the pulse spacin

of a CP or CPMG pulse sequence is readily understoo
eak collision relaxation theory. The transverse decay ra
ssentially proportional to the spectral density of field flu
tions at frequency 1/4t. Thus, any fluctuation with av922

requency spectrum will result in at2 dependence ofT2
21; this

ncludes diffusion through a constant gradient as well as
uctuation with an exponential autocorrelation, provided
he experiment involves times short compared totc.

Simulations confirm thee2bt3 decays of two-pulse echo
rom an ensemble of spins, each subjected to frequency
Dv from each ofN two-state fluctuators. The simulatio

how that the echo decay becomese2kt for t * t c, where
otional averaging theory applies. For large interac

trengthsDv and/or small numbers of fluctuatorsN, the echo
ecay is again of the forme2kt because of the noncontinuo
tep-like nature of the frequency noise. This limit is w
escribed by strong collision theory. For largeN, there is a
ange ofDvtc values that result in observablee2bt3 decays.
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