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Diffusion of precessing spins through a constant field gradient is
well-known to produce two distinctive features: an exp(—bt®) de-
cay of the echo amplitude in response to two pulses and a much
slower decay of the Carr—Purcell echo train. These features will
appear whenever the spin frequency is described by a continuous
random-walk. The present work shows that this may also occur in
the presence of motions with long correlation times =.—continu-
ous Gaussian frequency noise with an exponential autocorrelation
has the correct properties over time durations smaller than ..
Thus, time-cubed echo decays will occur in situations other than
physical diffusion. The decay rate of the Carr—Purcell echo train is
shown to vary with the pulse spacing = whenever the correlation
time 7. is long; the slower Carr—Purcell decay compared to the
two-pulse echo decay is not unique to diffusion. Simulations are
presented that display time-cubed decays. The simulations con-
firm two important criteria: the echo time must be less than 7. and
the frequency noise must consist of nearly continuous variations,
as opposed to step-like changes. These criteria define the range of
physical parameters for which time-cubed decays will be
observable. © 1999 Academic Press

Key Words: diffusion; transverse relaxation; spin-spin relax-
ation; spin echoes.

I. INTRODUCTION

From the earliest observations of spin echadBsir{f NMR,
the case of spins diffusing with coefficiebt through a con-

t (t = n27, wheren is the integer echo number at tirtewith
amplitudeA,

A(t) = exp(—y2G2D72/3). 2]

For a large number of echoast is much smaller that Thus,
the CPMG echoes decay exponentially in titnand decay
more slowly -5 than the two-pulse echoes of Eq. [1]. In-
deed, in the limit that the pulse spacirgapproaches 0, the
diffusive damping is zero, allowing the “tru€,” (neglected
here) to be determined; this was an original purpose of th
Carr—Purcell pulse sequence 6).

Recently, spin echoes have been used to measure the dif
sion coefficient of the modulation wave of incommensurately
distorted solids 1-10. Here the distortion wave couples
through the quadrupole interaction to the frequency of a give
spin transition. Some of the work has be&pZero-field NQR
and some has bee®+{10 high-field, quadrupole-perturbed
NMR. The spin-echo envelope in these systems has a dec
e e " the linear term is ordinar{f, damping while the®
damping is regarded assignaturefor diffusion of the distor-
tion wave. Here the role of the field gradient is supplied by the
distortion wave’sslope, linking spin frequency to position.
Indeed, the variation of the apparent diffusion coefficien

stant field gradienG = (9|H|/ax) h:,as been discussed. The, ross the inhomogeneously broadened lines is clear evider
problem can be treated with Torrey’s formalism of the diffusy, small variationsof the phase of the modulation wave).(

sion-modified Bloch equation2€4) or by following the fre-
guency and phase trajectories of the ensemble of spins.

nential of thecubeof the echo timet( = 27, wherer is the
pulse spacing). ThuA follows

A(t) = exp(—y2G2Dt¥12), [1]

In the incommensurately distorted systems, the distortio

) i %e is generally pinned to defects or impurities. Thus, on
result @, 4) is that the echo amplitud& decays as the expo-

expects thermal agitation to yiel@stricted diffusion of the
distortion, at best. Of course, provided the spin echo times a
short enough, unbounded diffusion and restricted diffusion c
the distortion wave will be indistinguishable.

Our purpose here is not to further examine the incommer
surate solids. Instead, the use of &é" decay as a signature

where all other sources of decay have been neglected. Furtliédiffusion advances the central questions of the present wor
more, the damping due to diffusion can be suppressed ‘f#re there circumstances other than physical diffusion tha

refocusing the spins many times during the tim& hus, the
Carr—Purcell-Meiboom-Gill pulse sequencg € (90,—7—

result in e ®® two-pulse echo decays? Under what circum-

stances do CPMG echoes decay more slowly than two-pul:

180,—m—echo<+—180~—7r—echo-, etc.) yields an echo at time echoes?”
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Il. RESULTS AND DISCUSSION WHITE NOISE R
SOURCE o

Time-Cubed Decay

In the presence of a constant gradi€nta spin’s frequency Vo T Vo

w is linearly related to its positior, with o = w, + yGX. o
Thus, in the case that the spin diffuses, its frequency is a

ntin Iv chanaing variable that ex ¢ random w FIG. 1. Circuit for generating continuous, Gaussian noise with an auto
co uously changing variable that executes a rando %U?relation function of expt|t|/r;), with 7. = RC. The circuit is used to

(i.e., Aw)” is proportional to the time interval). ObviousBny  calculate the statistical properties of the output voltagéor times short
systemn which the spin frequency is a continuously changingpmpared tor.. The voltageV is analogous to the spin frequenayin this
random-walking variable will produce the same spin echgngevin model.
behavior as in diffusion-through-a-gradient. That is, the two-
pulse echo amplitude will decay as”™ and CPMG echo trains
will decay more slowly than two-pulse echoes. The key ingre- For simplicity, let each fluctuator be a two-state device witt
dient is that thespin frequency must be diffusinggardless of allowed values ok = +1. We go to the limit ofN — «. We
how this arises. note that the rms value ab — w, is VN and that this rms
For a spin diffusing in a box of sidé with a constant value corresponds closer and closer to a 50:50 distribution ¢
gradient G, the peak excursions of the frequenay are two-state fluctuators ad — . Thus, forN — o, nearly the
++vyGL/2. The frequency has a well-defined correlation time entire probability distribution ok involves configurations near
(if the diffusion were unbounded, this would not be so) which0:50, more and more distant from the upper and lower bounc
is approximately the time to diffuse across the bax:= (=N). Thus, it is reasonable that the effects of the limits
L?/2D. Since the results of Egs. [1] and [2] refer to unboundedisappear asN — <« and the behavior becomes that of an
diffusion, they apply only for echo experiments over timegnbounded random-walker for< 7.
t < 7. The continuous, Gaussian noise of our model may be creat
Thus, we are led to examine other sources of continuous spinthe action of an RC-filter on white nois€, This Langevin
frequency fluctuations with long correlation times Specifi- model (12) is presented in Fig. 1. The output voltayeplays
cally, we consider a spin whose frequenays determined by the same role as the spin frequeney above. The output
the sum of a very large numba¥ of independent fluctuators, voltageV will obey a differential equation,

= wy+ E X;. [3] dt - RC [4]

The fluctuators could be other spins that couple magnetically'fgegrating fromt, to t, + t, one obtainsAV, the change in

 or they could be molecules that jump between two or moRtPUL voltage,

orientations and couple te through quadrupole interaction.

The numbem is large so that fluctuates essentiallyontin- v V.. = AV

uously,regardless of whether the individual fluctuationsare (oo T

continuous or discrete. Each fluctuator must couplewto 1 [ _ to+t

Wea_kly SO that any step-changesdnare of no consequence; = RCJ Vi dt’ + RCJ V,dt'.  [5]

again this says the numbErmust be large. We assume that the t

individual fluctuators are all characterized by the same expo-

nential autocorrelation3( 4, 19 function, exp|t|/7.), with _ _ _ _

the same correlation time,. Thus, asw is the sum ofN Provided the time durationobeyst < ., Vy, in the second

independent fluctuators) will have the same autocorrelationintégral may be treated as a constant,. Thus, one has

function and time constant as the individual fluctuators. By the

central limit theorem 12), the values ofw will have an ap- it

proximately Gaussian distribution. _ _ RC(AV) = J Vo dt’ = Vit 6]
Now, the above model doe®tresult inw executing a true

random-walk. Indeedw will have upper and lower bounds

given by the sums over all the fluctuators of the largest and

smallest valuesx;. But for N very large, these limits are where the first term is the result that would be obtained if the

inconsequential over timgs<< 7.. To show this, we first use white noise were simply integrated, the random-walk case

a heuristic argument and later use a Langevin model. Taking the mean square afV, and using RC= ., we have

to

to
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tort 2 the inner brackets of Eq. [9] can be expanded and have
T2(AV)% = (J Ve dt' | + VZ,t2 leading term int®, resulting in
to
. A(t) = exp(—M,1(t%/127Y)). [10]
- ZtV(to) j OV(tr)dt,. [7] bis . . )
. Thus, thee ™" echo decay is a direct result of the assumption:

about the fluctuations in the spin frequency.

In this equatiori/’ = 0, removing the cross-term. The first term 1 1€ above argument used explicitly only the autocorrelatio
is the random walk result and Imear in time, because the ©f the spin frequency. Where does the requirementdotin-

correlation timeof the white noisel is infinitesimal and UousGaussian noise arise? The calculation assurh@silfat,
consequently short compared ttoyielding at all times, the distribution of spin phase is Gaussian. Discre!

changes in spin frequency (hopping) would give rise to :
T - two-component distribution—a zero-width component for
T(AV)® = 2Vi7ct + Vit®. (8] spins with no frequency change and a broader component fro
those spins whose frequency jumped once or more. Only for
The coefficients in front of are secondary to our argument ané> 7. (not useful here) does this tend to Gaussian, with all spin
result from standard Langevin theory2j. [In detail, in terms experiencing many frequency changes. Thus, Egs. [9] and [1
of the autocorrelatiot) of the input noise voltag®’, the first refer specifically to continuous frequency variations.
term F of [7] may be written as a double integral. The end
result isF = t [ Ug,dr, where the infinitesimally short Carr—Purcell Echo Trains
correlation time allows the integral limits onto be taken to

+o0. The Green’s function solution to [4] is Unlike the T, damping of the Bloch equation8,(4), the

damping due to diffusion through a field gradient is substan
tially reduced by using a multiple echo sequence like the
B t t)RCA L Carr—Purcell or CPMG sequencg, ©). But this reduction in
V(t) = Ve dt. transverse dampingannotbe regarded as a signature of dif-
U= fusion. Indeed, we show here that the reduction in dampin
should occur whenever the correlation timeof the fluctua-
From this, the mean squared output voltageis found by tions of w is long, specificallyr < 7, where 7 is the pulse
double integration again, leading Y = [ U, dr/ 27, with spacing of the CP or CPMG sequence.
integral limits again taken out ta-ec. Together the result is Karlicek and Lowe 16) introduced the widely used notion
F = 27.V?t.] Returning to [8], the first term dominates thethat thew pulses of a CP or CPMG sequence effectively inver
second one for short times< 7. Thus, for such short times, the resonance offset or field gradient at eachpulse (7).
the change itV (or w in the spin problem) is just that of a pureThus, the actual resonance offset is to be thought of as mul
random-walk (simple integration of white noise yields only thplied by a square wave of frequency t/Zhus, for any weak
first term, linear int). Thus, the spin in the above model willfield to have a cumulative effect it must contain components e
yield an echo amplitude that decayseas®. frequency 1/4 (or, to a lesser extent, any of its odd harmonics
We stress that the above scenarid\oindependent fluctua- 3/4r, 5/4r, etc.). So approximately, standard relaxation theon
tors is quite distinct from the diffusion problem. For exampld3, 4, 19 which is restricted to weak collision cases predicts ¢
in the above scenariay has an approximately Gaussian disdecay rateT,*
tribution while in the diffusion problem, the distribution of
frequencies reflects the size and shape of the sample. Ty =M, Jimon, [11]
A more formal approach is to use the result of Klauder and

Anderson 3) for the spin echo amplitud& in the presence of

Gaussian noise with an exponential autocorrelation with tinfd'€r€M is the second moment (mean-square) of the fluctu
constantr,. As quoted elsewherel4, 19, for echo timet, ations andJ is their spectral density; the angular frequency
/27 corresponds to 1/#in cycles per second. An excellent

discussion of this viewpoint appears in Callaghan’s té8).(
A(t) = exp< —szﬁ{ 4e V2 _ gt 4 i _ 3}) . [9] Consider a fluctuating frequenay described by an expo-
Te nential autocorrelation function, exp(t|/r.), with correlation
time 7.. Here we do not require thab be a continuously
This expression is valid for all times shorter or longer than fluctuating variable, so this is much less restrictive than th
.. It is derived (3) using the relation for Gaussian distribusmodel proposed above to yiekl ™ two-pulse decays. The
tions of spin phase, (e'*) = exp(—3$?). For timest < 7., spectral density will be
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Te one. The above result for the echo train decay rate agrees w
J = 1+ o272 [12]  that of Ansermett al. (19 to within an unimportant small
numerical factor. This decay rate is very close to that fron
relaxation theory, Eq. [13]; the numerical difference betweel
C4/772 and 1/2 is likely due to our approximations, including the
rYegIect of the higher harmonics of the square wave in th
relaxation theory calculation. The practical importance of th
» y 14 » result (L5) is that the effect of the other spin on the observec
To" = M[(7/27)°7] " = AM, ¥/ 7. [13] spin’s transverse decay may be driven to zero by making tt
pulse spacing very small. Finally, we reiterate that tHe
This last result has the usual result®f* « 7. in the slow dependence of,* depends only on the &/ tail of J,, and
fluctuation limit. Ther® dependence of ;' is present in the can occur widely, anywhere from diffusing systems to two-
result of the diffusion case expressed in Eq. [2], but its prestate models. The’ dependence cannot be taken as a signatul
ence here shows it is more general, resulting simply from tlo¢ diffusion.
1/w'? tail of the Lorentzian spectral density.
In the case of diffusion12), the particle velocity has a I11. SIMULATIONS
nearly white frequency spectrum (typically out to'18™%).
Particle positiorx and velocityv are related by = iw’x (here Simulations of two-pulse echoes and CPMG echo train
we adopt a frequency domain viewpoint of the particle mdrave been performed using a Monte Carlo approach to dete
tion), or x = v/io'. Because power spectra involt&o mine the conditions yielding °* decays. The frequency of a
powers of the fluctuating variable, the spectrum of partickpin is determined by its interaction wit two-state fluctua-
position (and the directly related spin frequensyis 1/w'?, tors. Each fluctuator is equally likely to be in either state
just as in Eq. [12]. Thus, the well-knowti dependence of Eq. producing a frequency shift of the spin af(Aw); the spin’s
[2] results from the X' spectrum of a diffusing particle’s frequencyw is the sum over alN of these. Each of théN
position and spin frequency. Again, this view is developed Hjuctuators in the system has a correlation timeThus, the
Callaghan 18). timet’ to the next jump is chosen from a distributieit’) ~
Ansermetet al. considered a Carr—Purcell echo train with &xp(—t'/(27./N)). At that time, a randomly selected fluctuator
model of a spin coupled to a single (unobserved) other spitoggled to the opposite state.
(19). The other spin makes transitions (fro&p = +1/2 to The spin’s precessional phages initially zero, following a
—1/2) with a correlation timer.. These transitions may result#/2 RF pulse. The phasgis the time integral of the frequency
from dipolar-driven flip-flops among the other spins Br o, trivially calculated by multiplyingw by the duration of the
processes of the other spin. In a timehere will be a mean time interval over whichw is constant. The effect of an R
numberm = t/7. transitions of the other spin. Each transitiopulse is to invert the precessional phase The total spin
gives rise to a dephasing df¢ = éw - time. The frequency magnetization is computed &sos ¢), where the averaging is
changedw is just 2w, recalling that the other spin has just twaver an ensemble of 4000 spins, typically.
states, leading to frequenciesw and —w for the observed  Two-pulse echo decays are shown in Fig. 2. There, th
spin. The time over which the changed frequency acts fisictuators’ correlation time is, = 5. The normalized echo
between 0 and, depending on the exact time at which themplitudeA is presented by plotting-In(A) vs echo time on
transition of the other spin occurs relative to the RF pulsdsg-log axes so that the slope of any straight-line sectio
Subsequent transitions produce phase changes of either sigdicates the power on the time variable in the exponentia
again depending on the timing relative to the RF pulses. Thi#orizontal lines corresponding # = 0.999, 0.99, 0.9, 0.5,

which reduces to 1/ °r, for ’'7, > 1. Here the variable’ is
named to avoid confusion with the fluctuating spin frequen
. The CPMG decay rate will be, with < 7,

the mean squared phase error is approximately 0.1, and0.01 are provided. All of these results are well fit by
Eq. [9] with no adjustments to parameters. We do not prese
W =m-(2w- 7/2)2 = (t/7)w?r? [14] this fit because our goal is not to verify Eq. [9], but to indicate

. .

clearly the conditions under which one finds cubic-exponentic
decays. In the figure, the cubic-exponential decay is clearl
evident fort < 7., as shown by the solid lines with slope 3,
while the results fot > 7. tend toward slope= 1. For such

The linear increase inA¢g)® with time t indicates that the
amplitude of the echoes decays exponentially with timeith

rate long times, the theory of motional averaging applies, yielding
linear-exponential decays as is well-knows) 4, 1. The cu-
Tt =w?r?/ 27 [15] bic-exponential regime appears in simulations of systems wit
slow rotational diffusion 20).
here we have assumed the weak collision limit in whiakp)® The middle curve in Fig. 2 is a superposition of four sets o

for a single transition of the other spin is small compared tesults, all with the same value of the mean-squared interactic
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S ———— step-like nature of the frequency noise in the present mode
This is an important issue, because step-like variations wi
] often be encountered in magnetic resonance—magnetic ca
] pling to unlike spins is quantized through spin quantum me
] chanics. In the case of incommensurately distorted solid!
continuous motion of the (pinned) modulation wave seem
unlikely. Rather, discrete small motions should result fron
] distant phase slippages.

09% ] In Fig. 3,7, = 50 and all the diplayed echo times are smalle!
. ] thant,, avoiding the motional averaging effect apparent in Fig
s ] 2. The second moment is held constaniéA w)® = 50, with

E N = 5, 20, and 50. The slope 3 regions of the decay

—bt3

_ 99.9%

-In(A)

(following e °") all overlap, showing again that it is the
second moment that is important here.tAscreases, each data
set gradually becomes a linear-exponential.
The linear-exponential region is easily understood fron
: ] strong collision theory. The distribution of precessional phas
10! St ——5d b in the present model is not Gaussian, as assumed by Klauc
10" 10° 10’ 10 10°  and Anderson, for examplel®). Instead, a fraction expft/
t (27/N)] of the spins have suffered zero frequency change
from their N fluctuators (note—this is zero changes, not a ne
FIG. 2. Decay of the normalized two-pulse echo amplitllewith the  change of zero). Thus, the distribution of phase roughly a
vertical axis displaying-In(A), as a function of echo time Horizontal lines  55.,ssian with an added delta-spikepat 0, corresponding to

show the locations oA = 0.999, 0.99, 0.9, 0.5, 0.1, artd01. The value this fracti f SDi At h ti in that ha
of 7. is 5. In the lower, middle, and upper curves, the second mohighi)® IS Traction of Spins. ong enough times, any spin that ha

has values 0.05, 0.005, and 0.0005. In the middle curve, for figd)? = Suﬁergd a change_ in frequen_cy will develop alarge phase errc
0.005,four values ofN andAw are used. The primary result is that th¢"®  effectively removing the spin from the signal. Under these
decay (slope= 3) becomes™ (unity slope) for echo timeé > 7.

50%

10%
1%

strength (second moment)(Aw)? = 0.005. Thefour sets 10°
haveN = 50, 20, 10, and 5. The observation that the sets fall
on the same curve shows that only the second moment matters 0t |

here, whether in thé® or linear region. The upper and lower
curves are also foN = 50, but withN(Aw)? = 0.0005 and :
0.05, respectively. The change in second moment results inthe 19¢ £
offsets of these curves.

For a given set of parameters, one measure of the importa :
of the t < 7. criterion for cubic-exponential decays is thez 10? :
amplitude A of the decay fort = .. From Eq. [10] and T I
substitutingt = 7,

10"
Apy = exp(—N(Aw)?7Y12) = exp(—Q?), [16] g
_ _ ) ) 100 |
where the dimensionless paramegeis defined by ,
Q= Awr,N/|12. [17] 10’
10? 10" 10° 10’ 10°
Clearly, forQ > 1, the echo amplitude has already decayed to t

small values before the regime of motional narrowing is en-
tered. In this case, the time-cubed decay will be evident@-or FIG.3. Decay of two-pulse echoes, all at echo tinbes .. Herer, = 50
< 1. most of the observable part of the decay (betWAeﬁ and the second momeN(Aw)? is 50 throughout. The echo amplitudeis

- . limited from below by the lines of unity slope corresponding to expit/ 27.),
0.99 and)'ojj;dfor example) will occur fot > . and will be from strong collision theory. Three values¥fare used: 5, 20, and 50. Thus,

of the forme - _ the cubic-exponential decay will become linear-exponential at toriye to
The results in Fig. 3 explore the effect of the noncontinuouse discontinuous, step-like nature of the frequency fluctuations.



EXPONENTIAL TIME-CUBED ECHO DECAYS 369

conditions, the observed signal is entirely from the spins with  10%  ——mr—rrrmm—rprrrmm—rrem——rrr—rresem—rrr
zero frequency changes and the amplitudd iss exp(— Nt/ [ 1000=A0
27.). Solid lines of unity slope appear in Fig. 3, corresponding LT 100 40
to the above limiting amplitude foN = 5, 20, and 50. 10" ¢ . °
Clearly, the unity-slope parts of the decays are well-described i
by the above formulaA = exp(—Nt/27.). This is a “strong
collision” model, because it describes the limit in which a
single change in any of thé fluctuators is sufficient to totally __
dephase any spin. Only the spins with no “collisions” (no flipSt,
of any of the fluctuators) contribute to the echo. The stron&
collision limit also describes relaxation by slow molecular
reorientations, in the case of large-angle jumdg).( 10"

The unity-slope regions of the Fig. 3 decays show the
strong-collision effect. AN increases in Fig. 3, the unity-slope
lines are moved down on the plot; for large enoughthe 10°
slope = 3 region covers all of the measurable portion of the
decay (e.g.A > 0.01).This dependence dN stems from the
fixed second moment: for largd the step-size 2w of the
individual fluctuations is small and small frequency changes 0% 10° 10?
require more time to develop into “fatal” phase errors. t

The results of Fig. 3 demonstrate that the echo amplitude
decay will always followe ™" for small echo times. It is easy FIG. 4. Plot of two-pulse echo amplitud& over a wide range of inter-

to show analvtically that the exponent will be cubic in action strengthdw, all with 7. = 5 andN = 50. For very smallAw, one must
y y P enter the motional averaging region> r.) for substantial echo attenuation.

whether the distribution of precessional phasis Gaussian or For very largeAw, most of the observable portion of the de¢@y99 > A >

not, for short time. 0.01) occurs along the strong collision limit line (unity slope at left) given by
The crossover from cubic-exponential to linear-exponentietp(—Nt/27.). The time-cubed decay is observable for intermediate values

behavior will occur for echo timeg such that the cubic- A«

exponential of Eq. [10] approximately equals the limiting form

of the amplitude:

10°

102

10

10° 10* 10°

all begin ase™* until they run into the limiting line given by

exp(—Nt/27.). The data sets with the largest values/ab
(and henceP as defined above) follow the limiting line over
the entire measurable portion of the decay.

This occurs for Aw)?t®> = 6 and will correspond to an echo The two criteria for the observability of the™* decay are
amplitude of expt NV/1.5Awr,) = e *, where we define Q > 1 andP < 1. Together these may be written

the dimensionless paramefer= Awr/\V/1.5N. P is a mea-

sure of the effect of the step-like fluctuations in frequency. For 1/V/N <Awt.<N. [19]

P > 1, the case of largdw and/or smallN, the shift from

cubic-exponential to linear-exponential decay occurs at larggearly, the larger the number of fluctuatdys the larger the
values of the amplitudé. Thus, most of the observable decayange ofAwr, values that yield the cubic-exponential decay.
will be linear-exponential. On the other hand, for the case of The simulations were also used to test the CPMG decay
small Aw and/or largeN, P < 1, the shift will occur at very The decays were always exponential, with a decay rate pr
small amplitudes\. Thus, the observable portion of the decagortional toN(Aw)?7%/7. in the relevant conditions, in accord
will be cubic-exponential (unless the motional narrowing rewith Eqgs. [13] and [15]. Hence, in an experiment on a syster
gion oft > 7. is entered). with slowly fluctuating spin frequencies, two-pulse cubic ex-

In short, all the decays will start out cubic-exponential angonential-decays that become linear-exponential in CPMG e:
become linear-exponential at long times, either becaws#  periments could be observed.

eventually exceed, or because the decay amplitude is limited
from below by exp(Nt/27.). This last limitation will be IV. CONCLUSIONS
easily detected provided th& = Aw7/V1.5N > 1.

The curves in Fig. 4 show all of these effects. The number Diffusion of spins through a constant field gradient results ir
of fluctuatorsN is fixed at 50 and is 5. In the regiort > 7., an e *® decay of two-pulse spin-echoes and yields a Carr
the region of motional averaging, the decay curves tend to tRarcell echo train that decays (as) more slowly than the
form e, unity slope in Fig. 4. Fot < ., the decay curves two-pulse echoes. However, both of these features can res

A=exp(—N(Aw)?t%127) = exp(—Nt/27). [18]



370 PFITSCH, MCDOWELL, AND CONRADI

from situations not involving physical diffusion. First, it was REFERENCES
noted that the critical ingredient is that tlspin frequency
diffuses(i.e., the spin frequency is a continuous variable and- E- L- Hahn, Phys. Rev. 80, 580 (1950).
executes a random-walk). Second, it was shown that conting- H- C. Torrey, Phys. Rev. 104, 563 (1956).
ous Gaussian noise may be considered to execute a randoinC. P. Slichter, “Principles of Magnetic Resonance,” Springer, New
walk over times shorter than the correlation time. Thais);’ York (1990). o ‘
echo decays may occur for situations such as a single Sp‘?ﬂ A. Abragam, “The Principles of Nuclear Magnetism,” Oxford, Lon-
coupled to a great many fluctuators when the correlation time don (1961)
is long 5. H. Y. Carr and E. M. Purcell, Phys. Rev. 94, 630 (1954).

The variation of the decay rafg; * upon the pulse spacing 6. S. Meiboom and D. Gill, Rev. Sci. Instrum. 29, 688 (1958).
T Of a CP or CPMG pulse Sequence |S read”y understood w D. C. Ailion and J. A. Norcross, PhyS Rev. Lett. 74, 2383 (1995)
weak collision relaxation theory. The transverse decay rate f G. Papavassiliou, A. Leventis, F. Milia, and J. Dolinsek, Phys. Rev.
essentially proportional to the spectral density of field fluctu- Lett: 74, 2387 (1995).
ations at frequency 1#4 ThUS’ any fluctuation with a’ -2 9. G. PapaVaSSi"OU, M. Fardis, A. Leventis, F. Milia, J. Dolinsek, T.
frequency spectrum will result in & dependence of, *; this Apih, and M. U. Mikac, Phys. Rev. B 55, 12161 (1997).
includes diffusion through a constant gradient as well as ahy J- Polinsek and G. Papavassiliou, Phys. Rev. B 55, 8755 (1997).
fluctuation with an exponential autocorrelation, provided that: N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev. 73, 679
the experiment involves times short compared o (1948).

Simulations confirm the® decays of two-pulse echoesl?- F- Reif, “Fundamentals of Statistical and Thermal Physics,”

. . ... _McGraw-Hill, New York (1965).
from an ensemble of spins, each subjected to frequency sh|f§sJ R Kiaud . '(A ] ) Phvs. Rev. 125. 912 (1962
+Aw from each ofN two-state fluctuators. The simulations-> J- R- Klauder and P. W. Anderson, Phys. Rev. 125, 912 (1962).
show that the echo decay becomes! for t = 7. where 14 C.F Hazlewood, D. C. Chang, B. L. Nichols, and D. E. Woessner,
. ; . e . Biophys. J. 14, 583 (1974).
motional averaging theory applies. For large |nteract|olr]% 5 gi 3 7h ( )dJ C Gore. M . Med. 31 9
strengthsAw and/or small numbers of fluctuatokg the echo (1'99;1) enna, J. zhong, and J. L. tsore, Magn. Reson. Med. %,
; ; —kt ; :
decay. IS -again of the forra because.Of the rjon_co_ntl_nuousm R. F. Karlicek, Jr., and I. J. Lowe, J. Magn. Reson. 37, 75 (1980).
step-like nature of the frequency noise. This limit is well-
. .. . 17. D. E. Woessner, J. Chem. Phys. 34, 2057 (1961).

described by strong collision theory. For larje there is a

; ~bt3 18. P. T. Callaghan, “Principles of Nuclear Magnetic Resonance Mi-
range ofAwt, values that result in observabde™ decays. croscopy.” pp. 357-362, Oxford Univ. Press, Oxford (1991),

19. J. Ph. Ansermet, C. P. Slichter, and J. H. Sinfelt, J. Chem. Phys. 88,
5963 (1988).

The authors appreciate helpful conversations with P. A. Fedders. We th&fk D- E. Woessner, B. S. Snowden, Jr, and G. H. Meyer, J. Chem.
D. A. Yablonskiy for pointing out the general result in Refs4)(and (L5) and Phys. 51, 2968 (1969).
noting thatt®* was the leading term. Support of MSC through NSF Grant DMR1. D. E. Woessner, B. S. Snowden, Jr., and G. H. Meyer, J. Colloid
9705080 and of AFM through DMR 9804094 is gratefully acknowledged. Interface Sci. 34, 43 (1970).

ACKNOWLEDGMENTS



	I. INTRODUCTION
	II. RESULTS AND DISCUSSION
	FIG. 1

	III. SIMULATIONS
	FIG. 2
	FIG. 3
	FIG. 4

	IV. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

